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Abstract
We introduce the effective Hamiltonian which describes eg electrons in doped bilayer
La2−2xSr1+2xMn2O7 manganites and study magnetic and charge order using correlated
wavefunctions. The Hamiltonian includes: the kinetic energy, the crystal field splitting between
x2 − y2 and 3z2 − r 2 orbitals, on-site interactions—Coulomb U and Hund’s exchange JH

between eg electrons, antiferromagnetic superexchange interaction J ′ > 0 between t2g core
S = 3/2 spins, and finally the coupling between eg electrons and Jahn–Teller local modes. The
model reproduces reasonably well the evolution of magnetic order with increasing hole doping
x in the experimentally accessible range from x = 0.3 up to x = 0.9. Electron correlations are
found to be of crucial importance for the stability of the recently experimentally identified CE
phase in a half-doped (x = 0.5) bilayer (with zig-zag ferromagnetic chains in each plane
coupled antiferromagnetically with neighbouring chains in the same and in the other layer).

1. Introduction

The properties of doped colossal magnetoresistance mangan-
ites are puzzling and not completely understood in spite of
much effort put forward both in theory and in experiment [1, 2].
They are characterized by a complex interplay of charge, spin,
orbital and lattice degrees of freedom. The main difficulty in
the theoretical description of this class of compounds is re-
lated to this simultaneous interplay of several degrees of free-
dom. The early attempts, considering only some of them, such
as for instance the Jahn–Teller (JT) effect supplemented by
Hund’s exchange (but neglecting other on-site Coulomb in-
teractions) [1, 3], or considering only on-site Coulomb inter-
action U (while neglecting Hund’s exchange JH), or includ-
ing only the coupling to the lattice due to the JT effect [4],
turned out to be insufficient to account for the complexity of
experimental data. In fact, both large Coulomb interactions
and the orbital interactions which emerge due to the JT distor-
tions are responsible for the observed magnetic and orbital or-
der in LaMnO3 [5, 6]. In addition, it has also been realized that
the core t2g electrons, even if localized (passive), still play an

essential role in the observed magnetic order and may tip the
balance between different types of order due to the antiferro-
magnetic (AF) superexchange between them [7–10]. There-
fore, one cannot select a subset of the interactions as being es-
sential, with the others (of secondary importance) being added
only to get quantitative corrections. The actual magnetic, or-
bital and charge order in this class of compounds is a result of
subtle balance between all the numerous factors.

On the theoretical side, the multiband models and/or
approaches based on ab initio local density approximation
(LDA) computations extended by either static corrections due
to local Coulomb interaction U (LDA + U ) [7, 11–13], or
by dynamical mean-field theory (LDA + DMFT method) [14],
capture the essential features of the electronic structure and
are a good starting point for a more sophisticated theoretical
description of perovskite manganese oxides, making use of the
many-body theory. In the past a well known difficulty with
the latter approach, however, was the multitude of unknown
(Hamiltonian) parameters which had to be estimated or
computed independently (with a prohibitive cost). Therefore,
recent progress, in electronic structure calculations on the one
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hand and in experiment on the other, is of enormous help here
as the relevant parameters can be deduced, and the model
presented below is well supported. We emphasize that we
do not intend to achieve one hundred percent fidelity, but we
would like to identify the physical mechanisms responsible
for the particular types of order observed in doped bilayer
manganites using a well supported effective model (note that
a description of a particular phase stable at a single value of
doping would be possible with much simpler models which
contain only a few parameters).

In the present paper we use such an effective model
(featuring only Mn sites renormalized by the presence of
surrounding oxygens) for the description of itinerant eg

electrons which is believed to include all the essential
interactions present in doped manganites [9]. We do not
develop new concepts but rather put together the interactions
tested in numerous papers and investigate which ground state
is stable for a particular doping level when local electron
correlations and the JT effects are both included. Previously
this model was used in context of monolayer manganites [10].

In this paper we analyze two-dimensional (2D) bilayer
manganites such as La2−2x Sr1+2x Mn2O7. Indeed, while
an isotropic ferromagnetic (FM) phase in doped perovskite
systems [15] is described by the orbital liquid [16], this
class of compounds provides one of the best examples of
the complexity of manganite physics. Their experimental
properties, in particular information about the type of magnetic
order and phase diagram (versus doping), were described in
detail in a series of papers [17–24]. We present the effective
model which, in our opinion, is a necessary compromise
between simplicity and the requirement to include all basic
and relevant factors responsible for the physical properties of
bilayer La2−2xSr1+2xMn2O7 compounds. We assume that the
t2g orbitals of Mn3+ ions are occupied by three ‘core’ electrons
with total spin S = 3/2—the core electrons are treated here
as classical and frozen. The only active electrons which
contribute to charge dynamics and may induce charge order
are the eg ones. This approximation for 3/2 core spins has been
tested before and found to perform reasonably well [2, 8, 9].

The paper is organized as follows. First, we introduce
(in section 2) a realistic model for eg electrons in bilayer
manganites which includes the electron Coulomb interactions
and the local potentials acting on them due to JT distortions
(section 2). In this section we also present the method to
treat electron correlation effects in the ground state beyond
the Hartree–Fock (HF) approximation. The numerical results
are presented and analyzed in section 3. Here we address a
question as to which values of the parameters of the effective
Hamiltonian are appropriate to account for the experimentally
observed situation. Finally, section 4 contains a short summary
of the paper and gives general conclusions.

2. The effective model Hamiltonian

We study strongly correlated electrons in doped bilayer
manganites La2−2xSr1+2xMn2O7 (with 0.3 < x < 0.88), using
an effective model describing only Mn sites, where the state of
surrounding oxygens is simulated by an effective potential at

each site. It is believed that a realistic effective Hamiltonian
(which acts in the subspace of low energy eg states) can
be derived by a procedure of mapping the results of HF, or
LDA+U , or all-electron ab initio calculations obtained within
a more complete approach. A local basis at each manganese
site is given in such a model by two Wannier orbitals of the eg

symmetry (x2 − y2 and 3z2 − r 2) [11].
We investigate the system by using a Hubbard-like

Hamiltonian H for eg electrons which experience local fields
due to local JT distortions and due to their interactions with the
core t2g spins. The form of the Hamiltonian is the following:

H = Hkin + Hcr + Hint + Hspin + HJT. (1)

It consists of the kinetic energy Hkin, the crystal field splitting
of eg orbitals Hcr, on-site Coulomb interactions Hint, spin
interactions Hspin, and the JT part HJT. The first three terms
concern solely the eg subsystem, while the other two may be
seen as external fields acting on them. This model and/or
the essential parts of it were studied earlier in numerous
papers [1, 3, 9–11, 25–27].

The kinetic and one-body part, called for brevity the
kinetic energy,
Hkin = − 1

4 t0
∑

{i j}‖ab,σ

{
3d†

i xσ d j xσ + d†
i zσ d jzσ

± √
3(d†

i xσ d jzσ + d†
i zσ d j xσ )

} − t0
∑

{i j}‖c,σ

d†
i zσ d jzσ , (2)

is expressed using the basis of two eg orbitals

x2 − y2 ≡ |x〉, 3z2 − r 2 ≡ |z〉, (3)

per site—in short notation x and z orbitals—and includes
anisotropic phase dependent hopping [28]. Here d†

iμσ are
creation operators for an electron in orbital μ = x, z with
spin σ = ↑,↓ at site i , and summations include the nearest
neighbour pairs of indices {i j}. The effective Mn–Mn hopping
matrix elements arise due to the hybridization with oxygen
orbitals on Mn–O–Mn bonds, and are therefore anisotropic and
orbital dependent [28]. The hopping occurs between nearest
in-plane neighbours ({i j} ‖ ab) and nearest neighbours from
the upper and lower plane of the bilayer ({i j} ‖ c). The ± is
interpreted as plus sign for the bond {i j} parallel to the crystal
axis a and minus for {i j} parallel to the crystal axis b. As
mentioned above, the kinetic energy is supplemented by the
crystal field term

Hcr = 1
2 Ez

∑

iσ

(nizσ − nixσ ), (4)

which describes anisotropy between two eg states in the 2D
bilayer geometry (here niμσ = d†

iμσ diμσ are the corresponding
electron number operators). In the present convention used
in equation (4), for positive values of crystal field parameter
(Ez > 0) the occupancy of |x〉 orbital is favoured over the
occupancy of |z〉 orbital.

The interactions between eg electrons are given by [29]

Hint = U
∑

iμ

niμ↑niμ↓ + (
U − 5

2 JH
)∑

i

nix niz

− 1
2 JH

∑

i

(nix↑ − nix↓)(niz↑ − niz↓)

− JH

∑

iμ

Sz
i (niμ↑ − niμ↓). (5)
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We use the usual convention that the on-site Coulomb
interaction element is denoted as U , and Hund’s exchange
interaction element is JH [6]. The first three terms stand
for the interaction between eg electrons, while the last one
describes Hund’s exchange coupling between the eg electrons
and core t2g spins. The Hund’s exchange terms, as given
above in equation (5), correspond, in fact, to a rather crude
approximation. Namely, here for simplicity we use the Ising
interaction: instead of the spin–spin scalar products, we take
the product of two zth components of spin only. Thus,
we explicitly break the spin rotational symmetry and fix the
quantization axis along the zth spin component. This is not an
approximation, however, when the mean-field (MF) treatment
of the SU(2) symmetric Heisenberg term is employed in
order to determine the HF wavefunction. In fact, this form
of Hund’s interaction is consistent with the MF procedure,
where the remaining transverse terms do not contribute, and
also significantly simplifies the computation of the correlation
energy as described below. However, the price one has to pay is
that the phases with spatial variation of local spin quantization
axis are completely excluded from the present considerations.

As mentioned above, the frozen t2g core spins in
equations (5) and (6) are replaced by discrete classical Ising
variables Sz

i = ±3/2 [8, 9]. They interact through the effective
AF superexchange interaction J ′ > 0 [3, 6, 9, 13, 28] which
follows from the respective itinerant model for t2g electrons in
the strongly correlated regime [5], and we write the Ising term

Hspin = J ′ ∑

〈i j〉
Sz

i Sz
j . (6)

Here, unlike in equation (2), the sum over bonds 〈i j〉 includes
each pair of nearest neighbour sites only once.

Finally, the JT part in equation (1) is

HJT =
∑

i

{
g

(
Q2iτ

x
i + Q3iτ

z
i

) + 1
2 K

(
Q2

2i + Q2
3i

)}
, (7)

where the pseudospin operators τα
i (α = x, z) at site i are

defined by

τ x
i =

∑

σ

(d†
i xσ dizσ + d†

i zσ dixσ ),

τ z
i =

∑

σ

(d†
i xσ dixσ − d†

i zσ dizσ ),
(8)

and {Q2i , Q3i} denote the active JT deformation modes of
the oxygens around a given Mn ion at site i—they lift the
degeneracy of eg orbitals (and modify the orbital splitting due
to the crystal field Ez). For simplicity, the fully symmetric
(breathing mode) deformation is neglected in HJT, as well
as additional minor quadratic couplings (for a more elaborate
form of HJT including the next-neighbour couplings as applied
to manganites see for example [30]).

The parameters we used for the numerical calculations are
taken from the existing literature. Although their estimates
by various authors differ from each other, we selected the
commonly accepted values. Thus we take an effective (ddσ)

hopping element t0 = 0.4 eV following refs. [5, 10], while
other estimations in the literature fall in the range 0.2 < t0 <

0.6 eV [1, 4, 9, 31–33]. Reasonable values of the effective on-
site Coulomb repulsion range from U = 3.5 eV, deduced by
Kovaleva et al [34] from the analysis of the optical spectral
weights, to about U = 5.0 eV, which is expected in the
effective spin–orbital model [6]. The smallest value found in
the literature is 1.7 eV [11] obtained for the effective model
neglecting Hund’s exchange interaction (this value corresponds
in fact to U − 3JH). Park et al [12] estimated U to be
about 3.5 eV using their photoemission data (for the undoped
perovskite LaMnO3), while a much smaller value ∼2.0 eV
was deduced earlier by Okimoto et al [35] from the optical
conductivity data (for lightly doped La1−xSrx MnO3). Other
values suggested in the literature are close to 5.0 eV [9], or
to 5.5 eV [5]. Thus we see that the data on U used in the
literature are widely scattered. In fact, the screening of the
atomic value of U is considerable and the realistic value of U
in the manganites is difficult to estimate. We will argue that
reasonable agreement between the predictions of our model
and the experimental data requires an intermediate value in the
range U = (8 ± 2)t0.

Coming to Hund’s exchange coupling JH, we notice that
it is widely believed that the ratio JH/t0 is somewhat larger
than unity [1]. This indeed follows from the realistic parameter
estimates given by various authors, with JH varying from the
atomic value of 0.9 eV [32, 36] down to 0.7 eV [5] and
0.67 eV [6], and even being as small as JH = 0.5 eV (again
following reference [34] and assuming a larger screening).
Let us emphasize that the ratio of JH/U plays a crucial
role in the nature of superexchange interactions between eg

electrons [5, 6]. In our computations we used values ranging
from 0.5 to 0.9 eV (also a value of zero was studied in order
to emphasize the role of Hund’s term). The realistic value
applicable to La2−2x Sr1+2x Mn2O7 is (in our opinion) expected
to be close to 0.7 eV.

For the JT interaction parameters in equation (7) we adopt
K = 13 eV Å

−2
and g = 3.8 eV Å

−1
, following [4, 37–39].

For the parameter J ′ in equation (6) we adopted the value
4.0 meV. Smaller values do not seem to reproduce well the
occurrence of FM phases for smaller dopings (0.3 < x <

0.4). The value J ′ = 4.0 meV correlates reasonably well
with the value of 3.0 meV as obtained from the fit to spin
waves in LaSrMnO4 (in the framework of a slightly different
model) in [40]. Other studies [19, 33, 41] (again partly in
the framework of slightly different models) suggest a value
between 3.0 and 4.0 meV. The actual ratio J ′/t0 ≈ 0.01 in
principle falls into the range 0.01–0.1 which was recommended
by Dagotto, Hotta and Moreo in their review article [1]. Other
papers suggest that J ′ should be smaller, namely ∼3.0 meV [6]
or ∼1.0–1.5 meV [34], but even values as small as 0.9 meV [4]
or 0.4 meV [12], have been suggested.

The last parameter we consider is the crystal field splitting
Ez , for which we assumed the value Ez = 0 in most of our
calculations (i.e., degenerate x and z orbitals). Again we justify
this choice by verifying that this value seems to reproduce
best the experimental data. However, other non-zero values
were also suggested [12, 13, 42]. Thus we also studied (in
numerous test computations) such values as Ez = ±0.5t0 and
Ez = ±0.25t0, but in each case the final results invariably fall
too far away from experiment.
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We studied the ground states of 4 × 4 × 2 clusters in
bilayer geometry (containing N = 32 sites) with periodic
boundary conditions along crystallographic a and b axes, and
free boundary conditions along the crystallographic c axis,
assuming different hole concentration x = 1 − n (away from
half-filling n = 1, where n is eg electron density), changing
from x = 0.3 up to x = 0.88—all these dopings are well
covered by the experimental data [17–24]. (Larger clusters
such as 8 × 8 × 2 are feasible only for isolated computations
but certainly not for computations involving the thousands
of different initial conditions which were necessary in the
present case in order to catch the multitude of closely spaced
metastable ground states in a non-homogeneous system such
as the bilayer manganite.) First, the calculations within the HF
approximation employing a single-determinant wavefunction
were performed to establish the ground state wavefunction
|�HF〉. Thereby numerous starting initial conditions were used
(in order to get unbiased results we a used few hundred of them
for each point in the parameter space).

In the next step each of the obtained HF wavefunctions
|�0〉 was modified to improve the energy and to include the
effects of local electron correlations. We used exponential local
ansatz for the correlated ground state [43],

|�〉 = exp
(∑

m

ηm Om

)
|�0〉, (9)

where {ηm} are variational parameters, and {Om} is a set of
local correlation operators. The quality of the variational
wavefunction |�〉 depends on the choice of the correlation
operators. The variational parameters ηm are found by
minimizing the total energy

Etot = 〈�|H |�〉
〈�|�〉 . (10)

In this way the correlation energy, Ecorr = Etot − EHF, was
obtained. The correlation operators

Om ≡ δniμσ δniνσ , (11)

where δniμσ are density fluctuations, include the set of all
possible δniμσ δniνσ ′ on-site operators (defined separately for
each site i ). The symbol δ in δniμσ indicates taking only
that part of niμσ operator which annihilates one electron in an
occupied single particle state from the HF ground state |�0〉,
and creates an electron in one of the virtual states. The above
local operators Om defined in equation (11) (in the present
model) correspond to the subselection of the most important
two electron excitations within the ab initio configuration-
interaction method. For more technical details see [10, 44].

Let us note that three, four, or more electron excitations
are also important (in the intermediate and strong correlation
regime). However, as yet there is no controlled and/or efficient
method of implementing them for large systems (what we
mean here is for example a variant of the multiconfiguration
self-consistent field method augmented with averaged coupled
cluster approach working for clusters containing more than a
dozen of sites). Therefore, such excitations were neglected.

For a given doping x we performed the HF computations
starting from a given configuration of initial conditions, i.e.,
from predefined charge and spin configuration, predefined
pattern of core t2g spins (taken as frozen), and a predefined
set of classical {Q2i , Q3i } variables. The predefined core spin
patterns we took into account are shown in figure 1. For
each individual fixed set of initial conditions we obtain on
convergence the HF energy EHF and the HF wavefunction
|�0〉 accompanied by the optimized set of JT deformations—
{Q2i} and {Q3i}. Then, after finishing self-consistent HF
runs (still for the same set of fixed initial conditions) we
performed correlation computations and obtained the total
energy E (1)

tot (10).
Next the same procedure was applied to a second set of

fixed HF initial conditions to determine the corresponding local
energy minimum E (2)

tot for this configuration. In this way we
treated the entire set of HF initial conditions used in the present
calculations. Finally, the resulting set of total energies {E (n)

tot }
for different locally stable states {|�(n)〉} was inspected and
the lowest energy state was identified as a good candidate for
the true ground state (for given Hamiltonian parameters; we
remind the reader that this is in all cases the ground state at
zero temperature).

3. Results

In general the computations are costly and time consuming,
if one wants to obtain unbiased results. We used more
than thousand different initial conditions for each set of
Hamiltonian parameters, and as we have found, a posteriori,
any smaller number would certainly not suffice to cover all
a priori possible states. This large number corresponds to
the many potential possibilities of symmetry breaking in the
bilayer system.

First, the considered states belong to two classes: (i) either
the eg electrons in the ground state are all polarized in the FM
state, e.g. all spins pointing upwards, or (ii) the number of up
and down electrons is equal in the AF configuration (zero total
magnetization). For each one of these possibilities we need
separate HF and correlation calculations. All these potentially
possible configurations are in fact induced by the orientation
of core t2g spins (here assumed fixed and frozen). For each
doping we examined only the 8 possibilities of magnetically
ordered phases which are sketched in figure 1, in particular
five phases: G-type antiferromagnet, so-called G-AF phase;
zig-zag CE-type AF phase [45]; C-AF configuration (vertical
FM order with AF coupling between the alternating lines of
up and down spins), and A-AF phase with FM planes coupled
by AF interactions. The other 3 phases shown in figure 1,
A′-AF, C′-AF and CE′ phase, correspond to the reversed sign
of the inter-layer coupling, i.e., between upper and lower
planes of the bilayer. We believe that the present set captures
the essential states realized experimentally [18], and other spin
configurations were not taken into account (though certainly
examination of some random arrangements of core spins could
be of interest, in particular for large doping of x ∼ 0.7 where
a glassy phase was reported).

4
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Figure 1. The possible types of magnetic order of t2g core spins in 4 × 4 × 2 cluster. The upper/lower panel for each phase corresponds to the
upper/lower plane of the bilayer, respectively. The acronyms we use for the description of the individual magnetic phases are simplified (for
the needs of the present model) variants of acronyms used in the literature [9, 10, 18]. Concerning the spin zig-zag CE phase, note that zig-zag
lines of up (down) spins are fully visible only when the periodic boundary conditions of the 4 × 4 clusters in each layer are taken into account.

After fixing a core spin configuration, various starting
configurations of eg spins and charges (random arrangements)
were tried and the system was iterated until convergence. For
{Q2i} and {Q3i } variables we used zero (uniform) starting
values, and the system adjusted to proper finite values through
the iterations. As expected, the final directions of eg spins in
the converged states (on-sites with non-negligible eg charge)
were found to be parallel to those of the core t2g spins as long
as JH was finite (this was checked during each computer run).
This confirms that Hund’s exchange plays a prominent role
in local moment formation, as found before both in transition
metals [46] and in doped correlated insulators [9, 47].

Virtually, each set of initial conditions leads to some a
priori metastable state. Most of them are separated by a
tiny energy interval (typically only of the order of 0.01 eV
for the entire cluster). Thus identification of the true ground
state turns out to be somewhat problematic. To become
reasonably certain one must examine few hundred of such
metastable states. Even when such a large sample is available
one cannot exclude the possibility that another configuration
might be more stable in some cases. Namely, the change
of any of the employed approximations and assumptions can
(in principle) reverse the order of the ground state with one
of the neighbouring ‘metastable’ states. Take, for example,
the assumption that the core spins are frozen. One can

easily imagine that unfreezing them, i.e. allowing for quantum
fluctuations in AF local configurations, could lower the ground
state energy more in one spin configuration than in another one
by the order of 0.01 eV, which would be just sufficient to trigger
the discussed crossover between two phases. The same holds
true for: (i) somewhat better treatment of electron correlations,
(ii) including weak nearest neighbour inter-site Coulomb
repulsion, (iii) including next-nearest-neighbour hopping, and
finally (iv) considering more elaborate JT couplings which
involves three sites (e.g. as introduced in [30]).

Unfortunately, the entire phase diagram of the bilayer
system (when changing all Hamiltonian parameters and
doping) is numerically too expensive. Thus in this paper
only several isolated (but well motivated) points in the
parameter space were inspected in detail. The obtained stable
configurations for selected doping in the range 0.31 < x <

0.88 and for different values of Hund’s exchange JH are
presented in table 1. The selected doping levels correspond
(approximately) to the following numbers of holes nh =
10, 12, 14, . . . , 28, doped in half-filled configuration of the
considered 4 × 4 × 2 cluster. We notice that the central
column, i.e. the one corresponding to JH = 0.7 eV, reproduces
the experimental data [18] reasonably well. There are two
differences: (i) for the doping x = 0.69 we obtained C-AF,
while the experiment data point out towards some unspecified

5
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Figure 2. The FM ground state with nonuniform charge distribution obtained for doping x = 0.38. The orbital occupancy is also nonuniform
with a slightly higher electron density in the x2 − y2 orbital than in the 3z2 − r 2 one. Left upper and left lower panels: magnetic, charge and
orbital order for eg electrons as obtained in the 4 × 4 × 2 cluster (upper and lower planes of the bilayer) with 12 doped holes at half-filling
(x = 0.38). Core t2g spins are not shown. Right upper and right lower panels: the corresponding JT distortions (upper and lower planes of the

bilayer). Parameters of the Hamiltonian: t0 = 0.4 eV, U = 8t0 eV, JH = 0.7 eV, K = 13 eV Å
−2

, g = 3.8 eV Å
−1

, J ′ = 4.0 meV and
Ez = 0 eV. The ground state energies are: EHF = −36.264 eV, Etot = −36.277 eV.

Table 1. Magnetic order as obtained in the ground state of a
4 × 4 × 2 cluster for selected values of Hund’s exchange interaction
JH (in eV) and for increasing doping x . Other parameters of the
Hamiltonian (1): t0 = 0.4 eV, U = 8t0, K = 13 eV Å

−2
,

g = 3.8 eV Å
−1

, J ′ = 4.0 meV and Ez = 0.

JH (eV) → 0.9 0.8 0.7 0.6 0.5 0.0
x ↓
0.31 FM FM FM FM CE′ G-AF
0.38 FM FM FM FM CE G-AF
0.44 FM A-AF A-AF CE CE G-AF
0.50 CE A-AF CE CE CE G-AF
0.56 FM FM A-AF A-AF CE G-AF
0.62 A-AF A-AF A-AF A-AF A-AF G-AF
0.69 A-AF A-AF C-AF C-AF C-AF G-AF
0.75 C-AF C-AF C-AF C-AF C-AF G-AF
0.81 A′-AF C-AF C-AF C-AF C-AF G-AF
0.88 A′-AF A′-AF A′-AF A′-AF A′-AF G-AF

magnetic glassy phase; (ii) for the doping x = 0.88 we get
A′-AF instead of C-AF (our inter-layer coupling is FM instead
of the AF one suggested by the experimental results; still
the most stable order for a single plane is of the C-type as
expected). These results are robust as the analogous column
for JH = 0.65 eV (not shown in table 1) is the exact copy

Table 2. Magnetic order as obtained in the ground state of a
4 × 4 × 2 cluster with two values of U = 6t0 and 10t0, a few selected
values of Hund’s exchange interaction JH (in eV), and for increasing
doping x . Other parameters of the Hamiltonian (1) as in table 1.

U = 6t0 U = 10t0

JH (eV) → 0.9 0.7 0.5 0.9 0.8 0.7
x ↓
0.31 FM FM FM FM FM FM
0.38 FM FM CE’ FM FM A-AF
0.44 FM FM CE A-AF A-AF A-AF
0.50 FM CE CE A-AF A-AF CE
0.56 A-AF A-AF A-AF A-AF A-AF A-AF
0.62 FM A-AF A-AF A-AF A-AF A-AF
0.69 FM A-AF C-AF A-AF C-AF C-AF
0.75 C-AF C-AF C-AF C-AF C-AF C-AF
0.81 A′-AF C-AF C-AF C-AF C-AF C-AF
0.88 A′-AF A′-AF A′-AF A′-AF A′-AF A′-AF

of the column corresponding to JH = 0.7 eV. Altogether,
by making a comparison of table 1 with table 2 and with
other similar results (obtained for different parameters, not
shown) we could conclude that the most realistic parameter
set which is able to reproduce the essential features of the
bilayer manganites consists of the following parameters of the
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Figure 3. The A-AF ground state with nonuniform charge distribution for the doping of x = 0.44 (14 doped holes in the half-filled 4 × 4 × 2
cluster). The orbital ordering is uniform—mostly x2 − y2 orbitals are occupied. The legend and the parameters of the Hamiltonian are the
same as in figure 2. The ground state energies are: EHF = −33.383 eV, Etot = −33.394 eV.

Table 3. Magnetic order as obtained in the ground state of a
4 × 4 × 2 cluster for selected values of the crystal field Ez (in eV)
and increasing doping x . Other parameters of the Hamiltonian (1):

t0 = 0.4 eV, U = 8t0, JH = 0.7 eV, K = 13 eV Å
−2

,
g = 3.8 eV Å

−1
, J ′ = 4.0 meV.

Ez (eV) → −0.2 +0.2 −0.1 +0.1
x ↓
0.31 CE′ A-AF CE′ A-AF
0.38 A′-AF A-AF FM A-AF
0.44 A′-AF A-AF A′-AF A-AF
0.50 C′-AF A-AF A′-AF A-AF
0.56 C′-AF A-AF A′-AF A-AF
0.62 A′-AF A-AF A′-AF A-AF
0.69 A′-AF A-AF A′-AF A-AF
0.75 C-AF C-AF C-AF C-AF
0.81 A′-AF C-AF A′-AF C-AF
0.88 A′-AF C-AF A′-AF C-AF

effective Hamiltonian (1): t0 = 0.4 eV, U = 8t0, K =
13 eV Å

−2
, g = 3.8 eV Å

−1
, J ′ = 4.0 meV and Ez = 0

and JH = 0.65–0.7 eV.
Finally, as the last set we present the data of table 3

which support our belief that the crystal field in the bilayer
La2−2xSr1+2xMn2O7 manganite is very small and may be well
approximated by Ez = 0 (contrary to the orbital splitting
in monolayer manganites [10]). Indeed, the sequence of the
ground states obtained for Ez = 0 versus doping does not

reproduce the experimental data (which is best visible for the
case of lower dopings).

Altogether, by looking at the data in tables 1–3, we
could identify certain simple and persistent generic trends
in the multidimensional phase diagram which correspond to
the experimental observations. It is important that {|x〉, |z〉}
orbitals are almost degenerate (Ez � 0) as only then is the FM
order with disordered orbitals in the orbital liquid state [16]
stable, in agreement with experiment. At doping x > 0.5
various AF phases are stable. The generic type of order in this
regime is the A-AF phase, with the AF coupling between the
FM planes of the bilayer. However, when the doping is high
x � 0.75 and Hund’s exchange is not too strong JH � 0.7, the
FM bonds in the planes weaken and another instability towards
the C-AF phase occurs, in agreement with experiment [18] and
with other model calculations [9, 26]. This latter result is
robust and is remains unchanged when the value of U is varied
in the expected regime of 6t0 < U < 10t0. In fact, the eg

electrons are already strongly correlated at U = 6t0, so the
magnetic order depends only on the other parameters.

The data contained in tables 1–3 analyzed above focus on
the variation of the magnetic order in the ground state with
increasing doping x . One has to supplement the results for
the magnetic order with information about the charge order
and the orbital order and their variation with doping. We
present the respective data in figures 2–5. Therein we have
chosen the following conventions: at each site the circle radius

7



J. Phys.: Condens. Matter 20 (2008) 365212 K Rościszewski and A M Oleś

Figure 4. The CE phase with (checker-board) charge order in the ground state obtained for x = 0.5 doping (16 doped holes in the half-filled
4 × 4 × 2 cluster). The orbital polarization is uniform—mostly x2 − y2 orbitals are occupied. The legend and the parameters of the
Hamiltonian are the same as in figure 2. The ground state energies are: EHF = −30.311 eV, Etot = −30.351 eV. For the converged A-AF
metastable ground state we obtained the ground state energies EHF = −30.339 eV, Etot = −30.349 eV.

corresponds to the eg on-site total charge multiplied by 0.5;
the arrow length to the total eg spin; the horizontal bar length
(upper left and lower left panels of the bilayer) to the charge
density difference between x2 − y2 and 3z2 − r 2 orbitals
(namely—a bar-to-the-right with value of 0.5 corresponds to
pure x2 − y2 occupation, a bar-to-the-left with value of −0.5
corresponds to pure 3z2 − r 2 occupation, a dot, i.e. the absence
of the bar, corresponds to identical charge densities in both
orbitals (the amplitude of mixing was not computed in the
program)). On the right panels at each site (site shown as a
dot) two vertical bars are shown, the one slightly to the left
(from the dot) denotes twice the Q2i JT distortion and the one
slightly to the right denotes twice the Q3i one (bars directed
upwards are for positive, and the bars directed downwards for
negative values). All these values are expressed proportionally
to the nearest neighbour site–site distance which is assumed
to be unity. Note that the pictures shown in the panels of
figures 2–5 were generated automatically by the program as
separate output files in LaTex. Thus the radii of the circles are
only approximately proportional to the actual charge densities
(being closest to the circles predefined in the LaTex graphical
package).

The evolution of charge distribution found for the realistic
parameter set is rather simple to describe. At small dopings the
FM order is present (for 0.3 < x < 0.4), and it is accompanied
by the nonuniform charge distribution. This results from

local JT distortions around the Mn3+ ions occupied by an
eg electron. Therefore, one could call the states obtained at
doping x = 0.38 local polarons (see figure 2). We believe
that these states are responsible for the insulating nature of the
paramagnetic state above the magnetic transition, observed in
the FM bilayer manganites [48]. As the doping x increases and
approaches the value x = 0.5 this charge modulation is quickly
amplified (see figure 3), and at the precise value of x = 0.5 one
obtains perfect charge order of the simple checker-board type
accompanied by the CE magnetic order shown in figure 4.

Consider now the orbital states for increasing doping
x . For FM order (x � 0.3) we obtained that electrons
are distributed over x2 − y2 and 3z2 − r 2 orbitals (see
right- and left-directed horizontal bars in figure 2; when
the bars reduce to the dots one finds almost equal electron
densities in either orbital state). This situation corresponds
to the orbital liquid disordered state [16] and results in rather
strong double exchange FM interactions [33]. They occur
here in a bilayer system in spite of its reduced symmetry
as compared with the reference La1−xSrx MnO3 perovskites.
When x increases then the orbitals soon become polarized and
electrons predominantly occupy the x2 − y2 states, similar
to a single layer in La2−x Srx MnO4 [49]—the admixture of
3z2 − r 2 character, which results from the nonconservation
of the orbital flavour with the hopping process, is finite but
remains rather small. This change in the orbital occupancy
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Figure 5. The A-AF phase with nonuniform charge distribution in the ground state obtained for the doping of x = 0.56 (18 doped holes in the
half-filled 4 × 4 × 2 cluster). The orbital ordering is uniform—predominantly x2 − y2 orbitals are occupied. The legend and the parameters of
the Hamiltonian are the same as in figure 2. The ground state energies are: EHF = −26.820 eV, Etot = −26.835 eV.

gradually destabilizes the FM phase [33], and the magnetic
order changes to the A-AF one at x � 0.45. These findings are
in very good agreement with the experimental data [17–22, 24].

The case of x = 0.5 doping is of particular interest.
Experimentally the CE phase was difficult to detect and
was only reported in bilayer manganites quite recently [24].
According to our model calculations, the A-AF phase would
be stable if neglecting electronic correlations, but when the
correlation effects are included the CE phase (see figure 4)
takes over. In fact, the difference between the energies of the
A-AF and CE phase (see the caption of figure 4) is so small
in the framework of the present model that one might assume
that both of them are good candidates for the true ground
state. The CE order is known to be quite fragile in the purely
electronic models and is destabilized by increasing U when
the HF approximation is used [50]. We therefore emphasize
that local electronic correlations play a very important role and
stabilize this phase for x = 0.5 doping in the range of realistic
values JH � 0.7 eV (see tables 1 and 2), in agreement with
recent experimental data [24].

For further increased doping x > 0.5 the spatial charge
modulation gradually disappears (see figure 5) and for larger
values of x we get a uniform charge distribution with x2 − y2

orbitals occupied and only negligible occupancy of 3z2 − r 2

orbitals (not shown). This latter result is expected as more
kinetic energy is gained when orbitals are polarized in x2 − y2

states in layered systems [49]. Under these circumstances the

A-AF phase is favoured. A certain reorganization of orbital
occupancies, with somewhat increased density in 3z2 − r 2

orbitals, accompanies an instability towards the C-AF phase
which occurs in a range of doping around x = 0.75 (see
tables 1 and 2).

Our results reveal the generic presence of finite JT
distortions at least on charge-majority sites. In general Q3 are
negative while Q2 in turn takes on positive and negative values
in such a way that the lattice is distorted locally, as shown
schematically in [28] but the global (unidirectional) distortion
of the lattice is absent (best seen in figure 4). To obtain a better
overall insight into the gradual changes of charge distribution
with increased doping (particularly there where some large
changes occur) look at figures 2–5.

To finish the discussion of the results we would like to
point out that the obtained amplitudes of charge modulation
(between charge-majority and charge-minority sites) is in our
opinion larger than that obtained in the experiment [40]. This
is (i) an artefact of the effective model given in equation (1)
on the one hand, and (ii) due to finite size effects on the
other. First of all, let us note that the definition of local charge
centred at a given Mn ion is not unique. While the experiment
gives information about true atomic charges, the d states in the
present effective model represent not just individual Mn ions
but rather Wannier orbitals centred on them. It is to be expected
that each Wannier orbital extends not only up to neighbouring
oxygens but up to further Mn ions (so-called orthogonalization
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tails). In other words, in the present effective model (1) charge
differences between Wannier orbitals at different sites can be
large. However, when this is translated to the real space
corresponding to real crystal structure, then the charges on Mn
ions would be smeared out due to overlap (with other Wannier
orbitals) and the charge modulation between individual Mn
ions would be considerably reduced. Secondly, only discrete
energy spectra are realized in the present cluster calculations,
while the distribution of eigenstates is continuous in a metal
and the metallic screening is expected to reduce the amplitude
of charge modulation.

4. Summary

We have analyzed an effective theoretical model (1) for bilayer
manganites. It includes all essential features of strongly
correlated electrons in partly filled eg orbitals, such as: (i) their
anisotropic phase dependent hopping, (ii) large on-site electron
interactions described by the Coulomb U , and (iii) the coupling
of eg electron spins to frozen spins of core t2g electrons at
Mn ions by Hund’s exchange JH. The joint effect of large
Coulomb interactions and of the JT interactions with the lattice
plays a crucial role in the observed types of magnetic order in
the bilayer manganites [18], so we conclude that the observed
phase diagram follows from the competition between different
trends and intrinsic frustration of microscopic interactions,
similar to the one known for the doped perovskite manganites.

Our effective model reproduced the experimental phase di-
agram for the doped bilayer La2−2xSr1+2xMn2O7 manganites.
We have shown that calculations beyond the commonly em-
ployed Hartree–Fock approximation are necessary and local
electronic correlations play a very important role in obtaining
qualitatively correct phase diagram. Inter alia, these correla-
tions are responsible for the subtle stability of the CE phase
in the half-doped bilayer manganites. This demonstrates that
the CE-type of order is very subtle, and lattice effects such as
next-nearest-neighbour JT interactions might be necessary to
stabilize it not only in monolayer [30], but also in bilayer man-
ganites.

Altogether, we conclude that the effective model (1)
performs reasonably well and is able to reproduce qualitatively
all the systematic changes in magnetic, orbital and charge order
observed in the bilayer manganites. Therefore, we expect that
the present model provides a good starting point to investigate
the stability of magnetic phases in other complex systems, such
as perovskite manganites and manganite interfaces.
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[5] Feiner L F and Oleś A M 1999 Phys. Rev. B 59 3295
[6] Oleś A M, Khaliullin G, Horsch P and Feiner L F 2005

Phys. Rev. B 72 214431
[7] Mizokawa T and Fujimori A 1997 Phys. Rev. B 56 R493
[8] Dagotto E, Yunoki S, Malvezzi A L, Moreo A, Hu J, Capponi S,

Poilblanc D and Furukawa N 1998 Phys. Rev. B 58 6414
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Daghofer M and Oleś A M 2007 Acta Phys. Pol. A 111 497
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Stollhoff G, Oleś A M and Heine V 1990 Phys. Rev.

B 41 7028
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